skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeng, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA inMedicago truncatulaidentified from salt-treated Medicagotruncatulais important for salinity tolerance. We name the lncRNALAL,LncRNAANTISENSEtoM. truncatulaLIGHT-HARVESTING CHLOROPHYLL A/B BINDING(MtLHCB)genes. LALis an antisense to four consecutiveMtLHCBgenes on chromosome 6. In salt-treatedM. truncatula,LALis suppressed in an early stage but induced later; this pattern is opposite to that of the fourMtLHCBs. Thelalmutants show enhanced salinity tolerance, while overexpressingLALdisrupts this superior tolerance in thelalbackground, which indicates its regulatory role in salinity response. The regulatory role ofLALonMtLHCB1.4is further verified by transient co-expression ofLALandMtLHCB1.4-GFPin tobacco leaves, in which the cleavage ofMtLHCB1.4and production of secondary interfering RNA is identified. This work demonstrates a lncRNA,LAL, functioning as a regulator that fine-tunes salinity tolerance via regulatingMtLHCB1s’ expression inM. truncatula. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Seed physical dormancy (hard-seededness) is an interesting ecological phenomenon and important agronomic trait. The loss of seed coat impermeability/hard-seededness is a key target trait during the domestication of leguminous crops which allows seeds to germinate rapidly and uniformly. In this study, we examined the mutation of quantitative trait locus (QTL) genes, GmHs1-1 and GmqHS1, in 18 wild soybean (G. soja) and 23 cultivated soybean (G. max) accessions. The sequencing results indicate that a G-to-T substitution in GmqHS1 and a C-to-T substitution in GmHs1-1 occurred in all 23 cultivated soybean accessions but not in any of the 18 wild soybean accessions. The mutations in the two genes led to increased seed coat permeability in cultivated soybean. Therefore, we provide evidence that two genes, GmHs1-1 and GmqHS1, simultaneously contribute to the domestication of hard-seededness in soybeans. This finding is of great significance for genetic analysis and improved utilization of the soybean hard-seededness trait. 
    more » « less
  5. Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence. 
    more » « less
  6. Abstract Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class ⅡKNOTTED‐like homeobox (KNOXII) genes in the model leguminous plantMedicago truncatula. Phenotypic and genetic analyses suggest thatMtKNOX4,5are able to repress leaflet formation, whileMtKNOX3,9,10are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ‐mediated CK biosynthesis. Additionally, two boundary genes,FUSED COMPOUND LEAF1(orthologue ofArabidopsisClass MKNOX) andNO APICAL MERISTEM(orthologue ofArabidopsis CUP‐SHAPED COTYLEDON), are necessary for MtKNOX4‐mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves inM. truncatula. 
    more » « less
  7. Hagfishes are deep-sea animals, and they represent one of the oldest living relatives of animals with backbones. To defend themselves against predators, they produce a remarkable slime that is reinforced with fibers and can clog a predator’s gills, thwarting the attack. The slime deploys in less than half a second, exuding from specialized glands on the hagfish’s body and expanding up to 10,000 times its ejected volume. The defensive slime is highly dilute, consisting mostly of sea water, with low concentrations of mucus and strong, silk-like threads that are approximately 20 centimeters long. Where and how hagfish slime evolved remains a mystery. Zeng et al. set out to answer where on the hagfish’s body the slime glands originated, and how they may have evolved. First, Zeng et al. examined hagfishes and found that cells in the surface layer of their skin (the epidermis) produce threads roughly two millimeters in length that are released when the hagfish’s skin is damaged. These threads mix with the mucus that is produced by ruptured skin cells to form a slime that likely adheres to predators’ mouths. This slime could be a precursor of the slime produced by the specialized glands. To test this hypothesis, Zeng et al. analyzed which genes are turned on and off both in the hagfishes’ skin and in their slime glands. The patterns they found are consistent with the slime glands originating from the epidermis. Based on these results, Zeng et al. propose that ancient hagfishes first evolved the ability to produce slime with anti-predator effects when their skin was damaged in attacks. Over time, hagfishes that could produce and store more slime and eject it actively into a predator’s mouth likely had a better chance of surviving. This advantage may have led to the appearance of increasingly specialized glands that could carry out these functions. The findings of Zeng et al. will be of interest to evolutionary biologists, marine biologists, and those studying the ecology of predator-prey interactions. Because of its unique material properties, hagfish slime is also of interest to biophysicists, bioengineers and those engaged in biomimetic research. The origin of hagfish slime glands is an interesting example of how a new trait evolved, and may provide insight into the evolution of other adaptive traits. 
    more » « less
  8. Hagfishes defend themselves from gill-breathing predators by producing large volumes of fibrous slime when attacked. The slime's effectiveness comes from its ability to clog predators' gills, but the mechanisms by which hagfish slime clogs are uncertain, especially given its remarkably dilute concentration of solids. We quantified the clogging performance of hagfish slime over a range of concentrations, measured the contributions of its mucous and thread components, and measured the effect of turbulent mixing on clogging. To assess the porous structure of hagfish slime, we used a custom device to measure its Darcy permeability. We show that hagfish slime clogs at extremely dilute concentrations like those found in native hagfish slime and displays clogging performance that is superior to three thickening agents. We report an extremely low Darcy permeability for hagfish slime, and an effective pore size of 10–300 nm. We also show that the mucous and thread components play distinct yet crucial roles, with mucus being responsible for effective clogging and low permeability and the threads imparting mechanical strength and retaining clogging function over time. Our results provide new insights into the mechanisms by which hagfish slime clogs gills and may inspire the development of ultra-soft materials with novel properties. 
    more » « less